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Abstract

The ice block at initial temperature Tis = 0 �C is fixed at the center of a long, prismatic enclosure with isothermal vertical walls and
insulated horizontal walls. The enclosure is completely filled with water at initial temperature Til = 0 �C. Six numerical simulations were
performed by varying vertical wall temperatures from TW = 2 to 12 �C (range of Rayleigh number from 4.22 · 106 to 2.28 · 107). In the
case of TW > 8 �C the ice melts faster from above and for TW < 8 �C from below. In the case of TW = 8 �C, two vortices are separated by
nearly vertical 4 �C isotherm and the average Nusselt number remains constant during the convection dominated regime.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Melting and freezing are phase change phenomena that
have become an indispensable part of many technological
processes like the manufacturing of metal alloys, glass
and crystals, continuous casting, welding and purification
of metals. The processes of melting and solidification
belong to the class of moving or free boundary problems.
The essential and common feature of these problems is
the existence of a time and space dependent phase bound-
ary, whose position cannot be identified in advance, but
has to be determined as an important constituent of the
solution. The existence of the moving boundary introduces
a non-linear character to this type of problems, and causes
a lot of computational difficulties in the seeking of solution.
Nowadays, these problems are usually solved by numerical
techniques. There are two main groups of numerical meth-
ods for solving the moving boundary problems: front
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tracking methods and fixed spatial grid methods. A review
of the methods is given by Yao and Prusa [1]. Fukusako
and Yamada [2] have presented an extensive summary of
the work carried out on water freezing and ice melting
problems. The literature concerning the problem of ice
melting driven by natural convection in the presence of
maximum density appears to be mostly restricted to the
cylindrical geometry [3,4]. This problem is dealt with in
many applications such as ice thermal storage techniques
for air-conditioning, or the production of ice. Experimental
and numerical studies of water freezing by convection
involving maximum density inside rectangular cavities are
relatively extensive [5–7]. However, few studies have been
carried out on ice melting in an enclosure for situations
in which the density maximum is important. Vieira et al.
[8] presented a numerical and experimental investigation
into the effect of maximum density of water on the melting
of a vertical ice layer in a rectangular enclosure.

In this paper the influence of natural convection during
melting of a long ice block in a rectangular enclosure with
isothermal vertical walls filled with water is analyzed
numerically. Six simulations were performed by varying
hot wall temperatures from 2 to 12 �C.
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Nomenclature

a thermal diffusivity
aE, aN, aS, aW, aP coefficients in the difference equation
B length of the rectangular cavity
c specific heat capacity
f solid fraction
g gravitational acceleration
hL latent heat of fusion
H height of the rectangular cavity
k thermal conductivity
L characteristic length
p pressure
_Q heat transfer rate
t time
T temperature
_U rate of change of water internal energy

u, v velocity components in Cartesian coordinates
x, y

Vinit initial volume of ice
Vs solidified volume, m3

W width of the rectangular cavity
x, y Cartesian coordinates,
x0 ¼ x

W dimensionless x coordinate
y0 ¼ y

W dimensionless y coordinate
l dynamic viscosity
m kinematic viscosity
q density
q0 constant density of liquid
qmax maximal density of water at 4 �C

(Dq)max difference between maximum and minimum
density in the considered problem

NuW ¼
_QW�W

k1�DT 1�H �B average Nusselt number

Pr ¼ v1

a1
Prandtl number

_Q0
ice ¼

_Qice�W
k1�DT 1�H �B dimensionless heat transfer rate from

water to ice

Ra ¼ g�H3�ðDqÞmax

v1�a1�qmax
Rayleigh number

Ste ¼ c1ðT W�T mÞ
hL

Stefan number

s ¼ a1�t�Ste
H2 dimensionless time

sM ¼ Ste � a1�tM

H 2 dimensionless total time of melting

Subscripts

i initial
m melting
s solid
l liquid
P at the node P
W west boundary
N north boundary
S south boundary
E east boundary
1 clockwise
2 counterclockwise

Superscript

0 at previous time step
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The considered problem is of interest because of its fun-
damental nature. The goal of the work is to obtain a phys-
ical image and to identify main regimes in the melting
process of an ice block when it is surrounded by water
on all sides.
2. Mathematical model

Unsteady two-dimensional melting of ice is governed by
the basic laws represented by the continuity, momentum
and energy equations and by the following assumptions:
the liquid phase is incompressible and the Boussinesq
approximation is met, the flow is laminar, and viscous dis-
sipation is neglected. The mathematical model takes the
form
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Boundary conditions for the considered problem include

conditions at the solid impermeable isothermal or insulated
wall and the boundary condition at the solid–liquid inter-
face. At the impermeable wall both velocity components
are equal to zero. At the isothermal wall the boundary tem-
perature is prescribed, while at the insulated wall the nor-
mal derivative of temperature is equal to zero.

At the solid–liquid interface the temperature is constant
and equal to the melting temperature Tm. If the interface
velocity is negligible, the Stefan condition at the interface
follows from the energy equation, Eq. (4), in the form
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where the indices l and s refer to the liquid and solid phase,
respectively, and n is the coordinate normal to the phase
boundary.

3. Numerical method

In order to solve the equations of mathematical model,
the finite volume method, Patankar [9], using the fixed



Fig. 1. A part of computational domain.

Fig. 2. Schematic view of vertical ice layer melting process.
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rectangular grid has been adopted. The values of the pres-
sure and temperature field are computed at the central
nodes. The nodes for the u-velocity component are stag-
gered in the x-direction, while the nodes for the m–velocity
component are staggered in the y-direction as shown in
Fig. 1.

The governing equations are discretized using the expo-
nential differencing scheme [10] for the spatial derivatives
and the fully implicit scheme for the time integration.
For the pressure–velocity coupling the SIMPLER algo-
rithm is used. As the adopted finite volume method is well
known, only the details concerning the phase change term
in the energy equation and the implementation of the
Stefan condition have been given here. Discretized form
of Eq. (4) is

aPT P ¼ aET E þ aWT W þ aNT N þ aST S þ aP0T 0
P

þ qshL

V s � V 0
s

Dt
ð6Þ

where V 0
s and Vs are the values of the control volume solid-

ified part at the times t and t + Dt, respectively. The coeffi-
cients aP, aE, aN, aW and aS depend on the adopted
differencing scheme and the coefficient aP0 originates from
the unsteady term. Fig. 1 shows a part of computational
domain containing a solid–liquid interface. If during the
considered time step the control volume lies in the liquid
or in the solid phase, the last term of Eq. (6) is equal to zero
and the energy equation defines the temperature TP of the
control volume. If the interface passes through the control
volume, the temperature TP of the volume is set to the melt-
ing temperature Tm, while the value of the solidified vol-
ume Vs is calculated from Eq. (6). At the initial time, the
values of V 0

s are obtained on the basis of the initially pre-
scribed temperature. For a control volume with the tem-
perature higher than Tm, the value of V 0
s is set to V 0

s ¼ 0,
and in other case the volume is solidified with V 0

s ¼
DxPDyP. For each time step the calculation starts with the
assumed value of Vs, using the constraint 0 6 Vs 6 DxPDyP

and the final value of Vs is calculated through the iterative
procedure. The iterative procedure ends when the assump-
tions for Vs for all control volumes are confirmed, and the
prescribed accuracy of calculations for all governing equa-
tions is achieved. The implementation of boundary condi-
tions for velocity field is reduced to the examination of
Vs. For a control volume in which a phase change occurs
(Vs > 0), the velocity components at the volume faces are
set to zero, while the coefficients defined by the differencing
scheme stay unchanged. It is well known that natural con-
vection in water has a special feature due to the water
anomaly. The density variation with the temperature in
the range 0–20 �C can be approximated by the following
equation (see, for example, [11]):

fqgkg=m3 ¼ 999:8396

1þ k1fTg�C þ k2fTg2
�C þ k3fTg3

�C þ k4fTg4
�C

ð7Þ
where k1 = �0.6789645 · 10�4, k2 = 0.907294338 · 10�5,
k3 = �0.96456812 · 10�7, k4 = 0.873702983 · 10�9.

The non-linear density–temperature variation leads to
significantly more complicated natural convection flow pat-
terns than in the case of the linear one.

4. Results and discussion

4.1. Problem 1 – Melting of vertical ice layer in a
rectangular cavity

A numerical investigation, presented in this section, is
concerned with the melting problem of a vertical ice layer
in the presence of the horizontal temperature gradients
experimentally investigated by Vieira [12]. The considered
melting process occurs inside a rectangular cavity
(H = 0.0935 m, L = 0.187 m, shown in Fig. 2), with iso-
thermal vertical walls maintained at different temperatures.
Initially, half of cavity volume is filled with water, while the
other half is filled with ice, both at the melting temperature
(Tis = Til = Tm). The northern and southern walls are adi-
abatic. Eastern wall is maintained at melting temperature



Fig. 3. Interface shapes of vertical ice layer at selected times – numerical results (drawn black line) compared with experimental results (presented by the
photograph of the cavity).

Fig. 4. Schematic view of ice block melting problem.
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TE = Tm = 0 �C. At time t = 0, the western wall is abruptly
heated at the temperature TW = 8 �C and maintained at
this temperature thereafter. The principal dimensionless
groups are: Pr = 10.71; Ra = 4.98 · 106; Ste = 0.1.

Numerical computation is performed on the non-uni-
form 160 · 100 control volume (CV) grid. The total dimen-
sionless integration time was s = 0.046 and the integration
time step was Ds = 1.6 · 10�7.

Fig. 3 shows the comparison of interface shapes
obtained in experiment and in numerical simulation at four
different times. At the beginning of melting process the
numerical results are almost identical with experimental
ones, while toward the end of the process the certain dis-
crepancy has been increasing at the bottom of the cavity.
The obtained results confirm the validity of the adopted
mathematical model and numerical method.

4.2. Problem 2 – Melting of ice block in a rectangular
enclosure filled with water

The considered problem is schematically shown in
Fig. 4. The analyzed problem is the melting of a long ice
block at initial temperature Tis = 0 �C. The ice block is
fixed at the center of a long, prismatic enclosure completely
filled with water at initial temperature Til = 0 �C. The
problem is symmetrical with respect to the vertical mid-
plane. It is supposed that the enclosure is sufficiently long
in the direction normal to the plane of the enclosure for
the motion to be assumed to be two-dimensional. The
northern and southern walls are adiabatic, whereas the
eastern boundary is the symmetry plane. Western wall is
isothermal, maintained at a constant temperature TW. Ini-
tially, the volume of ice is 1/8, and the volume of water is
7/8 of the cavity volume.

Six simulations were performed covering a wide range of
hot wall temperatures TW (2, 4, 6, 8, 10 and 12 �C). Numer-
ical simulations are conducted on the non-uniform
160 · 160 control volume grid, shown in Fig. 5, which
has been refined in the ice region. Numerical integration
was being carried out till the end of the process of ice block
melting.

The principal dimensionless group (Pr,Ra,Ste), together
with the values of dimensionless melting time sM (the time
needed for the process of ice melting to be finished) are
summarized in Table 1.

It can be seen that the longest dimensionless melting
time is required in the case of TW = 8 �C. Fig. 6 shows
the interface shapes of ice block at selected times when



Fig. 5. The adopted grid.

Table 1
The values of dimensionless groups and dimensionless melting time for all
considered cases

Ste Pr Ra sM

TW = 2 �C 0.0253 12.96 4.224 · 106 0.01292
TW = 4 �C 0.0506 12.56 5.756 · 106 0.01287
TW = 6 �C 0.0759 12.06 5.906 · 106 0.01508
TW = 8 �C 0.1012 11.58 5.680 · 106 0.01773
TW = 10 �C 0.1265 11.18 1.295 · 107 0.01488
TW = 12 �C 0.1518 10.89 2.279 · 107 0.01321

Table 2
Dimensionless time s corresponding to a certain remaining part of ice
volume

V = 0.75Vinit V = 0.5Vinit V = 0.25Vinit V = 0.1Vinit

TW = 4 �C 0.0030 0.0055 0.0085 0.0108
TW = 6 �C 0.0034 0.0064 0.0097 0.0121
TW = 8 �C 0.0044 0.0086 0.0128 0.0151
TW = 10 �C 0.0048 0.0079 0.0107 0.0126
TW = 12 �C 0.0048 0.0070 0.0094 0.0113
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the remaining part of ice volume is 75%, 50%, 25% and
10% of the initial volume. Table 2 contains numerical val-
ues of dimensionless time for selected cases shown in Fig. 6.
It is clear from Fig. 6 that in the case of TW < 8 �C, the ice
is melting faster from below, and for TW > 8 �C from
above. For TW = 8 �C the ice block is melting almost uni-
formly from all sides.

In the cases of TW = 2, 4 and 6 �C, the average Nusselt
number decreases smoothly in time, while in the cases of
TW = 8, 10 and 12 �C, the average Nusselt number curves
change abruptly at certain time. That will be explained
by an analysis of velocity and temperature fields. A detailed
Fig. 6. Interface shapes of ic
analysis for the case of TW = 10 �C is carried out, followed
by a discussion of other cases. The results are presented in
the form of streamlines and the 4 �C isotherm shown in
Figs. 7 and 8. The 4 �C isotherm, when superimposed on
the streamline pattern, gives the location of the density
maximum and separates two vortices: the counterclockwise
(in the region of water temperature between 0 �C and 4 �C
– dark gray in Figs. 7 and 8) and the clockwise (in the
region of water temperature greater than 4 �C, light gray
in Figs. 7 and 8). In these figures the ice region is white,
and the 4 �C isotherm is the white line between two gray
regions.

Taking into account that the ice temperature is equal to
the melting temperature all the time, the equation of energy
balance for the whole system states

_QW ¼ _U þ _Qice ð8Þ

It is worth to note that the heat transfer rate from water to
ice _Qice is equal to the rate of heat sink due to ice melting.
In the case of two vortices, as depicted in Fig. 9, the heat
transfer rate at the hot wall may be divided into two parts
representing the heat transfer rate between the wall and
clockwise vortex and between the wall and counterclock-
wise vortex in the form _QW ¼ _QW1 þ _QW2, or in the dimen-
sionless form NuW = NuW1 + NuW2. The heat transfer rate
between the water and ice, as well as the rate of change of
water internal energy may also be divided into contribu-
tions from the clockwise and counterclockwise vortices in
the form _Qice ¼ _Qice1 þ _Qice2 and _U ¼ _U 1 þ _U 2. It is clear
that the following relations are valid for the energy
e block at selected times.



Fig. 7. Streamlines for the case TW = 10 �C at selected dimensionless times.
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balances for the volumes occupied by the clockwise and
counterclockwise vortices.

_QW1 ¼ _U 1 þ _Qice1 þ _Q12 and _QW2 þ _Q12 ¼ _U 2 þ _Qice2

ð9Þ

The terms _QW1, _QW2, _Qice1 and _Qice2 are calculated numeri-
cally as sums of heat transfer rates through the control vol-
ume faces at the hot wall and ice surface. Control volumes
with positive vertical velocity component near the hot wall,
and with negative vertical velocity component near the ice
surface belong to the clockwise vortex. For the counter-
clockwise vortex it is the opposite case: near the hot wall
the vertical velocity component is negative and near the
ice surface it is positive. Fig. 10a shows the time evolution
of the average Nusselt number at the hot wall for three



Fig. 8. Streamlines for the cases TW = 12, 8, 6 and 4 �C at selected dimensionless times.
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cases of TW = 2, 4 and 6 �C, and Fig. 10b for three cases of
TW = 8, 10 and 12 �C. Fig. 11a–d shows values of average
Fig. 9. Scheme of two vortices in the flow field.
Nusselt number NuW, NuW1 and NuW2 at the hot wall, and
dimensionless heat transfer rates _Q0

ice,
_Q0

ice1 and _Q0
ice2 at the

ice surface for the cases TW = 10, 12, 8 and 6 �C.
The detailed description of the particular cases follows.

4.2.1. Case TW = 10 �C

From the time evolution of the average Nusselt number
at the hot wall, one can distinguish the conduction and
convection dominated regimes of heat transfer. During
the convection dominated regime the contribution of clock-
wise vortex and counterclockwise vortex in ice melting may
be estimated from the time evolution of the heat transfer
rates shown in Fig. 11a. The pictures of streamlines and
4 �C isotherm at selected times shown in Fig. 7a–l can
explain these regimes.

4.2.1.1. An initial pure conduction regime. At the very begin-
ning of the melting process (s < 1.72 · 10�5 that cannot be
seen in Fig. 11a), heat transfer is dominated by conduction.
The isotherms are almost parallel to the hot wall. There is



Fig. 10. Time evolution of the average Nusselt number at the hot wall for
cases (a) TW < 8 �C and (b) TWP8 �C.
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no significant motion of the water and there is no melting
of ice yet.

4.2.1.2. A transition regime. The transition regime begins
with the appearance of a small clockwise vortex at the bot-
tom of the hot wall and a counterclockwise vortex near the
ice block. The counterclockwise vortex is very weak, and
takes place almost in the entire region of the water, as
shown in Fig. 7a. It is clear that the heat transfer rate is
more intensive at the upper portion of the hot wall due
to the larger temperature gradient than in the lower portion
where the clockwise vortex exists. As the clockwise vortex
grows, as shown in Fig. 7b–d, the average Nusselt number
at the hot wall sharply decreases, as shown in Fig. 11a. At
the end of this regime the clockwise vortex has grown over
the entire height of the hot wall, NuW2 becomes equal to
zero (s = 0.00093) and the average Nusselt number reaches
a local minimum in a certain time. During this regime the
ice is melting slowly, from below.

4.2.1.3. A regime of developed convection. This regime can
be divided into three sub-regimes. The first sub-regime,
which lasts approximately up to s = 0.00309, is character-
ized by the expansion of clockwise vortex on the account
of the counterclockwise one, as shown in Fig. 7e. As the
clockwise vortex expands, the intensity of natural convec-
tion rises and the heat transfer rate at the hot wall
increases, as shown in Fig. 11a. At the end of this sub-
regime the clockwise vortex is expanded close to the ice
region, and the heat transfer rate at the hot wall has
reached a local maximum. At the end of this sub-regime
the counterclockwise vortex is divided into two vortices:
a smaller one placed above the ice and a bigger one placed
beside and below the ice block, as shown in Fig. 7f and g.
During this sub-regime the clockwise vortex is not in the
contact with the ice ( _Q0

ice1 is equal to zero, as shown in
Fig. 11a), so the ice is still melted faster from below than
from above.

The second sub-regime begins when the warm water
starts entering the space above the ice block, as it is shown
in Fig. 7g and h. At the beginning of this sub-regime
the heat transfer rate between water and ice is abruptly
changed due to contact of hot water from the clockwise
vortex and ice, as it is shown in Fig. 11a, so the ice is melt-
ing faster from above than from below. At the top of the
ice a thin boundary layer is formed, and at the end of this
sub-regime the horizontal temperature stratification
appears in the water in the upper portion of the cavity.
The counterclockwise vortex still occupies nearly half of
the cavity volume.

During the third sub-regime, the clockwise vortex pre-
vails over the counterclockwise one and the ice is melting
mainly from above because the thermal boundary layer
becomes thinner and the heat transfer rate from water to
ice increases. Fig. 7k shows streamlines and the 4 �C iso-
therm at s = 0.00824. After this time, the warm water
(clockwise vortex) enters the region below the ice, as shown
in Fig. 7l. The ice is completely melted at s = 0.0148, as can
be seen from Fig. 11a.

4.2.2. Case TW = 12 �C

This case is qualitatively very similar to the case of
TW = 10 �C. The ice block is melting faster than in the pre-
vious case due to the bigger temperature difference between
the hot wall and the ice.

Fig. 8a and b shows streamlines and the regions of two
vortices at two instants, one before and the other after the
warm water enters the space above the ice. After the for-
mer, the ice block is melting faster from above than from
below, as in a previous case. Fig. 11b shows the time evo-
lutions of the Nusselt number and dimensionless heat
transfer rates _Q0

ice,
_Q0

ice1 and _Q0
ice2 that are very similar to

the case of TW = 10 �C.

4.2.3. Case TW = 8 �C

In this case, the transition regime (growing of the
clockwise vortex up to the entire height of the hot wall)
ends at s = 0.0021 and after that, the two vortices are sep-
arated by nearly vertical 4 �C isotherm. In the next regime,
the clockwise vortex expands, while the 4 �C isotherm
remains nearly vertical as it is shown in Fig. 8d and e.



Fig. 11. Time evolution of the average Nusselt number at the hot wall for TW = 10, 12, 8, 6 �C.
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The temperature drop is 4 �C in both vortices, the sum of
their widths is constant, so their thermal resistance is inde-
pendent of the individual sizes of vortices. Because of that
the average Nusselt number stays nearly constant until the
clockwise vortex is spread close to the ice block, as it can be
seen in Fig. 11c. When the clockwise vortex is spread close
to the ice block, warm water tends to enter the space above
and below the ice block, as shown in Fig. 8f. That is why
the ice melting is nearly uniform from all sides.

4.2.4. Case TW = 6 �C

In this case the clockwise vortex grows along the verti-
cal wall during almost the entire melting process (the heat
transfer rate NuW2 becomes equal to zero at s = 0.01329,
while total melting time sM = 0.01508). It expands faster
to the right than upwards so the counterclockwise vortex
is in a direct contact with both the hot wall and the
ice block. That is why the ice block is melting faster
from below than from above. Fig. 8g–i illustrates the
clockwise vortex expansion. The Nusselt number decreases
smoothly with the decrease of the contact area between
counterclockwise vortex and the hot wall, as shown in
Fig. 11d.
4.2.5. Cases TW = 2 �C and 4 �C

In these cases only the counterclockwise vortex exists
and it is melting the ice block faster from below than from
above. The Nusselt number smoothly decreases in time and
the dimensionless melting time is nearly equal in both
cases.

5. Conclusions

In the case of TW > 8 �C the melting process may be
divided into three typical successive regimes: an initial pure
conduction regime, a transition regime and a convection
dominated regime. The former regime can be divided into
three sub-regimes. The first sub-regime is characterized
by the expansion of the clockwise vortex on the account
of the counterclockwise one. As the clockwise vortex
expands the heat transfer rate at the hot wall increases.
At the end of this sub-regime, the clockwise vortex is
expanded close to the ice block, the heat transfer rate at
the hot wall reaches a local maximum and the ice is still
melting faster from below than from above. The second
sub-regime starts when the warm water enters the space
above the ice so that the ice starts melting faster from
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above than from below. During the third sub-regime, the
clockwise vortex completely prevails over the counterclock-
wise one, and the ice is again melting faster from above
than from below. In the case of TW = 8 �C the vortices
are separated by nearly vertical 4 �C isotherm, and the
average Nusselt number stays constant during the time
interval. In the case of TW < 8 �C, the clockwise vortex
expands faster to the right than upwards, so the ice is melt-
ing faster from below than from above all the time.
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